Wecome to HeBei ShengShi HongBang Cellulose Technology CO.,LTD.

  • fff1
  • fff2
  • fff3
  • fff4
  • Group 205.webp1
HeBei ShengShi HongBang Cellulose Technology CO.,LTD.
hpmc dextran hydroxypropyl methyl cellulose
hpmc dextran 70 hydroxypropyl methylcellulose
bei ya selulosi ya methyl hydroxyethyl

What I’m Seeing in Hydroxypropyl Methyl Cellulose Right Now If you work in dry-mix mortars, pharma tablets, or even detergent pods, you’ve probably bumped into Hydroxypropyl Methyl Cellulose HPMC more than once. It’s a non-ionic cellulose ether—yes, derived from natural cellulose—and it keeps getting more attention as the “quiet” performance enhancer in countless formulations. Honestly, adoption is accelerating across construction chemicals and high-viscosity personal care because of supply stability and cost-to-value. Many customers say the workability gains are immediate; I tend to agree. Origin and who’s behind it From HeBei ShengShi HongBang Cellulose Technology CO., LTD (Room 1904, Building B, Wanda Office Building, JiaoYu Road, Xinji City, Hebei Province). I’ve toured similar facilities; the process is rigorous and surprisingly clean. Their pitch is consistent rheology, tight particle size control, and fast redispersion in cement-alkali environments. How it’s made (short version, no fluff) Materials: refined cotton, NaOH (alkalization), methyl chloride (MC), propylene oxide (PO), purified water. Method flow: alkalization → etherification (MC+PO) → neutralization → washing to remove salts → drying → milling → sieving → packaging. QA/testing: viscosity (Brookfield, 2% w/w, 20°C), methoxyl/hydroxypropyl content, moisture, pH, ash, sieve residue, gel temperature. Service life: ≈24 months in dry, sealed bags; avoid >30°C and humidity. Real-world use may vary. Industries: tile adhesive, EIFS/ETICS, gypsum putty, self-leveling; tablets (binder), ophthalmics, toothpaste; shampoos, detergents, coatings. Product specifications (typical) Parameter Spec (≈) Viscosity (2% w/w, 20°C) 400–200,000 mPa·s (multiple grades) Methoxyl (DS) 19–24% Hydroxypropyl (MS) 4–12% Moisture ≤5% pH (1% sol.) 6.0–8.5 Gel temperature 60–75°C Sieve residue (100 mesh) ≤1% Bulk density 0.30–0.50 g/cm³ Note: measured by Brookfield LV, spindle/time per internal SOP; actual plant results vary with salts and mixing energy. Why formulators pick it Water retention and open time in cement systems (EN 12004 tile standards). Anti-sag, better trowelability; smoother edges on putties. Tablet binding/film formation meeting USP/Ph. Eur. monographs. Electrolyte tolerance; stable viscosity in laundry detergents—surprisingly robust. Vendor snapshot (what buyers compare) Vendor Certs Strength Viscosity Range MOQ HeBei ShengShi HongBang ISO 9001; REACH prereg. Construction focus; cost-value 400–200,000 ≈1 MT Dow (METHOCEL) ISO, GMP sites Global supply, pharma grades Low to ultra-high Varies Ashland (Benecel) ISO, EXCiPACT Tablets, coatings uniformity Wide Varies Applications and quick data Tile adhesive: +0.2–0.35% Hydroxypropyl Methyl Cellulose HPMC → open time +10–15 min; slip ≤0.5 mm (EN 12004). Self-leveling: 0.05–0.1% improves edge cohesion; flow per ASTM C1437: 115–130% with stable ring. Gypsum putty: 0.2–0.3% → sag drop by ≈30%, smoother knife feel (shop-floor feedback). Tablets: 2–5% binder; disintegration tuned via viscosity grade (USP-NF compliant grades available). Customization and QC For Hydroxypropyl Methyl Cellulose HPMC , you can specify viscosity windows, substitution ratios, surface treatment for fast wetting, and targeted gel temp. Batch COAs usually list Brookfield data, moisture, mesh residue, and heavy metals when applicable. Incoming QC on your side? I’d validate viscosity at your ionic strength, not just DI water. Mini case studies Eastern EU tile factory: switched to 60,000 mPa·s grade; open time +12 min; consumer complaints on “grab” fell 40% in 2 months. Generic IR tablet line: replaced PVP with Hydroxypropyl Methyl Cellulose HPMC binder at 3%; friability down from 0.9% to 0.3% while keeping disintegration at 9–12 min. Standards and compliance Typical references: EN 12004 (tile adhesives), ASTM C1437 (flow), ISO 9001 for QMS, USP/Ph. Eur. Hypromellose monographs, plus REACH where required. To be honest, don’t skip pilot mixes; salts and fillers can nudge viscosity more than you expect. Citations ASTM C1437 – Standard Test Method for Flow of Hydraulic Cement Mortar. EN 12004 – Adhesives for tiles: Requirements, evaluation of conformity. USP–NF Monograph: Hypromellose (Hydroxypropyl Methylcellulose). ISO 9001:2015 – Quality Management Systems Requirements.

  • 40000tons
    Group_492

    Production

  • 20+years
    Group_493

    Experience

  • 5000+
    Group_494

    Acreage

Product Category
  • fabricants d'éther d'amidon

    HPMC Dextran is the innovative addition to the pharmaceutical excipients' domain that is capturing significant attention due to its versatile applications and unparalleled quality. Leveraging real-world experience combined with profound expertise in the field of pharmaceutical science, the exploration of HPMC Dextran offers insightful revelations into its potential benefits and applications. HPMC (Hydroxypropyl Methylcellulose) Dextran is an intelligent combination of two well-established pharmaceutical excipients HPMC and dextran. This unique hybrid formulation marries the gel-forming, stabilizing properties of HPMC with the biocompatibility and low-immunogenicity characteristics of dextran. The result is a compound that significantly enhances the functionality and efficacy of therapeutic drugs, creating new possibilities in drug development and formulation. The experience-driven exploration of HPMC Dextran highlights its remarkable ability to improve the solubility and bioavailability of hydrophobic drugs. This property is particularly important for oral and injectable drug formulations where solubility can be a limiting factor. Formulators have reported enhanced patient outcomes in trials of drugs using HPMC Dextran due to its exceptional capacity to optimize drug release profiles, leading to steady drug concentrations in the bloodstream. Going beyond solubility enhancement, HPMC Dextran offers significant improvements in the stability of sensitive drug molecules. This compound protects active pharmaceutical ingredients (APIs) against degradation caused by environmental factors such as light, heat, and pH variations. Its film-forming ability ensures a robust protective barrier around APIs, prolonging their shelf-life and maintaining their therapeutic efficacy. This attribute is substantiated by authoritative reports from stability studies showcasing a reduction in degradation rates of key APIs when incorporated into HPMC Dextran matrixes. hpmc dextran Trustworthiness in pharmaceutical excipients is paramount , and HPMC Dextran shines with its proven safety profile. This compound has passed rigorous toxicological evaluations and is recognized for its non-cytotoxicity, non-immunogenicity, and biodegradability. Pharmaceutical developers trust HPMC Dextran not only for the safety it provides but also because it aligns well with the stringent regulatory requirements globally. Detailed safety assessments have reiterated its compatibility with a wide range of APIs, further validating its standing as a reliable and trustworthy excipient choice. Professionals exploring the application of HPMC Dextran can testify to its seamless integration into existing pharmaceutical production processes. With minimal requirement for additional infrastructure or re-calibration, adapting formulations to include HPMC Dextran is cost-effective and efficient. The excipient responds well to conventional and advanced manufacturing technologies such as 3D printing, thus supporting innovative formulation techniques that are reshaping modern drug development. HPMC Dextran stands out as a cornerstone in the ever-evolving pursuit of superior pharmaceutical formulations. By embracing this advanced excipient, pharmaceutical developers access an unprecedented opportunity to enhance drug performance and patient satisfaction. It is an embodiment of progress intersecting with demand, where established scientific principles meet real-world application, underscored by the trust it earns from researchers and manufacturers worldwide. The journey with HPMC Dextran is just beginning, promising an era of greater possibilities and achievements in pharmaceutical sciences.

  • النشا الأثير الصين

    In the ever-evolving landscape of manufacturing, rubber powder has emerged as a vital component, especially in sectors aiming for sustainability and cost-effectiveness. Derived primarily from recycled tires, rubber powder finds applications in numerous industries, such as automotive, construction, and even footwear. The sustainability angle makes it appealing to eco-conscious manufacturers, while the cost benefits extend its reach to businesses of all sizes. The journey from a discarded tire to finely ground rubber powder is both fascinating and enlightening. The manufacturing process of rubber powder is an exemplar of how innovation and sustainability can coexist. The process typically involves several critical stages, each contributing uniquely to the final product's quality and applicability. The first crucial step in manufacturing rubber powder is the collection and inspection of waste tires. Tires are often sourced from landfills or directly from tire retailers. The inspection process ensures that only suitable tires—free from significant contaminants—are processed. The collected tires then undergo shearing, where they are cut into smaller, manageable chunks. Once sheared, the rubber chunks enter the initial grinding phase. This step involves powerful grinders that break down the rubber into smaller granules. It's essential that the grinding process is done under controlled conditions to maintain the rubber's intrinsic properties. Cryogenic grinding often plays a role here, where the rubber is frozen using liquid nitrogen and then shattered. This method not only preserves the rubber's quality but also ensures uniform granule size, which is crucial for quality control and subsequent applications. Following the grinding, magnetic separation is employed to remove metallic contaminants such as steel wire, which is a standard component in tire manufacturing. Advanced separators employ both magnetic and eddy-current technologies to ensure a high degree of purity in the resultant rubber granules. The next phase involves refining these granules into powder form. Milling machines are used to pulverize the granules into fine rubber powder. The fineness of this powder can be adjusted based on the specific requirements of its intended use—ranging from coarse grades for general applications to ultra-fine grades for more sophisticated industrial purposes. This adaptability is key to rubber powder's versatility in various manufacturing processes . rubber powder wikipedia manufacturing process A critical aspect of rubber powder production is quality assurance. Numerous tests are conducted to ensure the powder meets industry standards for particle size, tensile strength, and purity. Consistent quality is imperative, as the performance of the rubber powder in its final application hinges on these metrics. Experts in the field advocate for continuous innovation in this process. Advanced technologies like automated sorting and AI-driven quality control systems are being integrated to enhance efficiency and precision. These innovations not only streamline operations but also bolster the reliability and consistency of the rubber powder produced. Sustainability is a cornerstone of the rubber powder manufacturing process. By recycling tires, manufacturers significantly reduce the environmental impact associated with rubber production. This process also aligns with the circular economy principles, where waste is minimized and resources are reutilized effectively. The market for rubber powder is expansive. In construction, it is used to produce modified asphalt, offering improved durability and resistance to the elements. In the automotive industry, it provides enhanced properties in tire and non-tire applications. Moreover, its use in consumer goods such as rubber-soled footwear and playground surfaces underscores its broad applicability. For manufacturers looking to integrate rubber powder into their products, understanding the nuanced process of its creation is essential. By leveraging this knowledge, companies can optimize product performance, reinforce their commitment to sustainability, and achieve significant cost savings. In conclusion, the production of rubber powder is a testament to the innovative spirit within the manufacturing sector, combining technical expertise with sustainable practices. As industries continue to seek eco-friendly and efficient materials, rubber powder’s role is poised to expand, offering myriad possibilities for future development and application.

Get Free Quote or Can call us At Our Emergency Services

+86-131-8048-6930

Our Advantage
We have three
advantages
  • Group_497

    200000 Viscosities

    Excellent product

    We can produce pure products up to 200,000 viscosities

  • Group_496

    40000 tons

    High yield

    We don’t stop production all year round, and the annual output can reach 40,000 tons

  • Frame

    24 hours

    Quality service

    We provide 24-hours online reception service, welcome to consult at any time

———— Inquiry Form

Schedule A services


If you are interested in our products, you can choose to leave your information here, and we will be in touch with you shortly.


TOP